
Graph-Based Cooperative Robot Path Planning in Agricultural

Environments

Hemanth Sarabu 1, Konrad Ahlin 2, and Ai-Ping Hu 3

Abstract— This paper describes a method of using dual robot
arms to cooperatively pick apples in an unstructured orchard
environment. Each arm is equipped with an RGB-D (color-
plus-depth) camera in an eye-in-hand configuration. The first
robot arm, termed the Grasp arm, is positioned relatively close
to the tree and designated with picking apples. It uses its
camera to locate apples that are within view and also within
reach. The second Search arm, is located nearby and is used
to detect apples that are hidden from the grasp arm and to
plan a clear path for it to those fruits using a method based
on rapidly-exploring random trees. Fruit location and clear
path information is encoded into a graph representation that
is expressive enough to encode memory and lends itself to
various decision-making algorithms. It embodies the idea of
using clear paths for planning, as opposed to mapping ob-
stacles, hence maintaining a lower-dimensional representation.
Computer simulation and experimental results are presented
based on a preliminary implementation.

I. INTRODUCTION

The approach taken to automated fruit harvesting usually

divides the task into the following operations: fruit detection

and localization followed by robot path planning and control

[13]. A survey of popular sensor modalities, detection and

control algorithms, as well as current challenges has been

presented recently in [15] and [14]. A review of prior work

reveals that assumptions of planar canopies (trellises) and

lack of obstacles are popular among research groups. It is

also apparent that limited work has been done so far in

investigating the possible benefits of using cooperative robots

to augment target detection and path generation for this

application space.

In this paper, we report on the progress of on-going work

[1] to develop and implement path planning and control

strategies for dual robot arms (a grasp arm and a search

arm) tasked with picking fruit in a natural, unstructured

apple orchard environment (see Fig. 1). The grasp and search

arms are used to detect, localize, and approach apples while

generating paths in a collaborative fashion. We use a unified

graph to represent viable target apples and clear spaces

between points, thus reasoning over a lower-dimensional rep-

resentation than a traditional 3D occupancy map. Each arm

has an RGB-D (i.e., color-plus-depth) eye-in-hand camera,

used for perception and motion control via visual servoing.

1Hemanth Sarabu is a graduate student in the School of Computational
Science and Engineering, Georgia Institute of Technology, Atlanta, GA USA
hemanth.sarabu@gtri.gatech.edu

2 Konrad Ahlin is a Research Engineer at the Georgia Tech Research
Institute, Atlanta, GA USA konrad.ahlin@gtri.gatech.edu

3 Ai-Ping Hu is a Principal Research Engineer at
the Georgia Tech Research Institute, Atlanta, GA USA
ai-ping.hu@gtri.gatech.edu

Fig. 1: Testbed dual robot arm system in an apple orchard.

Our work includes elements in common with prior re-

ported automated fruit picking research. In 2011, [4] pro-

posed an apple harvesting robot design with an eye-in-

hand camera and a laser range sensor that was able to

achieve a success rate of over 90% using open-loop visual

servoing. The average cycle time per apple was 7.1 seconds.

Later in 2013, [8] used a modular hierarchical planning

framework where apples were detected and recorded into

a target list and a collision map including a compressed 3D

point cloud data list with annotations of targets and obstacles

was maintained. Various probabilistic motion planners were

tested and their solution times were reported. In 2017, [7]

designed a sweet pepper harvesting robot that used an eye-in-

hand RGB-D camera and a predetermined scanning motion

to build a 3D model of the environment. The sweet peppers

were segmented in the image using color information and

localized using a fitted parametric model. Two state machines

were run concurrently where one is continuously processing

segmented sweet peppers to calculate candidate grasping and

cutting trajectories while the other plans and executes actions

on available targets. It appears that this reactive system is

heavily reliant on the predetermined scan pattern and no

adaptive scanning and mapping techniques are used.

Three relevant examples of prior work have been found

where collaborative robots have been used in fruit harvest-

ing. In 2004, [9] proposed and tested a masterslave robot

motion control system developing a GOTO algorithm and

a FOLLOW algorithm for field vehicles. In 2014, [16]

described algorithms that plan the assignment of melons

to be harvested for a given number of robotic arms and

their capabilities while Cartesian manipulators mounted on

a rectangular frame carry the arms laterally across the crop

 Proceedings of the 2019 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics
 Hong Kong, China, July 8-12, 2019

978-1-7281-2492-6/19/$31.00 ©2019 IEEE 519

bed. The paper assumes that the locations of melons are

known a priori and that no sensing is required to detect and

localize the targets. The planning problem is reduced to a

k-colorable sub-graph problem and they have shown that

in some situations a local search algorithm could produce

near-optimal assignments. In 2017, [3] designed and tested

a robotic system that used one manipulator to pick apples

and a second one to collect the picked apples near the point

of detachment. By adopting pick-and-catch over a pick-and-

place routine, they have reportedly achieved a cycle time

reduction of 50%.

We use dual robot arms each equipped with an eye-in-hand

RGB-D camera working cooperatively to populate a unified

graph representing candidate detected apple locations and

clear paths to them. Our goal is to operate within a natural

unstructured orchard for which no a priori information is

assumed known and to achieve grasping of all apples within

reach of the designated grasp arm. The graph representation

is expressive enough to encode memory and lends itself to

various decision making algorithms. It embodies the idea of

using clear paths for planning, as opposed to mapping obsta-

cles, hence maintaining a lower-dimensional representation.

We describe our graph representation, a functioning state

machine to schedule robot arm activities, and initial results

of implementing a path planning method based on a variant

of rapidly-exploring random trees (RRTs) [6], the latter for

which there is prior application in automated fruit harvesting.

For example, in 2015, [10] compared sampling-based path

planners for the application of grape vine pruning using

robotic arms and found that RRT-based algorithms displayed

best overall performance (success rate and computation time)

in unstructured settings. In 2019, [2] developed an RRT-

based planning technique for an automated litchi-picking

manipulator. The researchers biased new samples added

to the tree towards the target in order to accelerate path

generation and applied genetic and smoothing algorithms to

optimize the proposed path.

In our dual arm approach, the grasp arm is only able

to generate paths to apples that it discovers during its

predetermined scan routine or while it effects actions to

approach mapped apples. The search arm is employed to

rectify this shortcoming by finding apples that are within the

grasp arm’s configuration space and generating paths from

them to the grasp arm’s connected sub-graph. This problem is

well-suited for bidirectional search algorithms such as RRT-

Connect [5], where trees are grown from both the source and

the goal configurations to generate paths.

II. METHOD

The proposed robotic system adopts a look-then-move

scheme during most operational states and an open-loop

visual servoing control scheme during the final reach-and-

grasp sequence. Motion to targets is executed in finite steps,

interleaved with perception related tasks.

A. System Overview

Grasp Arm: The grasp arm (G) is a 6-DOF robotic manipu-

lator outfitted with an eye-in-hand RGB-D camera. This arm

is designated to approach target apples and mime a picking

a motion.

Search Arm: The search arm (S) is identical to G, except

it is not equipped with a gripper. It is used to assist G in

finding apples and generating viable paths.

Graph: An internal graph representation is constructed based

on apples (nodes) and clear paths (edges) discovered by

arms during operation. High-level planning decisions (such

as which apple to pick at a given time) are made upon

reasoning over this graph.

Finite State Machine: A finite state machine (SM) designed

to realize the desired behavior is implemented using ROS

Actionlib and SMACH.

B. Graph

The graph structure (Fig. 2) has the following attributes:

Nodes: A node in the graph can represent either an apple

or a position that G’s end-effector (camera and gripper)

can move to. Every node in the graph possesses a location

attribute that specifies its position in the global coordinate

frame. Apple nodes that have been “seen” by G are colored

red and those perceived only by S are colored blue. Green

nodes denote positions in space that G has either been in

or can move to. Apple nodes (blue and red) also carry a

size attribute that is estimated and updated using simple

machine vision techniques. Two types of edges are used to

connect nodes with one another.

Connectivity: These are the first type of weighted edges;

they are drawn between nodes that G has traversed through.

An edge is weighted by the Euclidean distance between the

nodes it is connecting. These edges are shown in green.

Visibility: These are the second type of weight edges; when

G is able to “see” an apple, one of these edges is drawn

between the nodes corresponding to G’s current location

and the apple that it sees. The weights are, again, set to

Euclidean distances. These edges are shown in red.

Fig. 2: Graph overview.

C. Role of Grasp Arm in Graph Building and Maintenance

Apart from grasping and dropping apples, G is responsible

for the following actions:

520

• G spawns a new green node every time it moves to a

novel position.

• When G sees an undiscovered apple within its config-

uration space, it spawns a red node in the graph and

draws a red edge to it from its current node.

• When G sees an apple that already has a corresponding

node in the graph, it draws a red edge from its current

position to the apple node that it sees, therefore increas-

ing the degree of the apple node. It also colors that node

red, irrespective of its previous color.

• When G does not see an apple at a location where it

expects to see one (due to either apple being picked

already, poor localization, or poor detection), it changes

the node’s color from red to green. This is done to re-

use that node for planning and sampling purposes in the

future.

• G is limited to traverse within its connected sub-graph

C. Any nodes spawned outside of the connected com-

ponent are ignored until a connection is made between

them and the sub-graph.

D. Role of Search Arm in Graph Building and Maintenance

• When S sees an undiscovered apple within G’s config-

uration space, it spawns a blue node in the graph.

• It conducts its own scanning maneuvers to maximize

apple discovery.

• It is responsible for connecting “lone” blue nodes to the

sub-graph that G is limited to traverse.

Fig. 3: Graph building schematic shown in 2D.

E. Desired Cooperative Behavior

The cooperative behavior desired of the dual robot arm

system is explained in this section. If G’s 6-DOF workspace

is denoted by G, then we aim to maximize the number of

apples in G that are registered and harvested by G. This

involves discovering these apples (spawning nodes either red

or blue) and then turning them red by some means. Explicitly,

G spawns red nodes when it sees an apple, indicating a clear

path to the node. This (given our assumptions) guarantees

that the apple can be picked. Blue nodes that have been

spawned by S and not registered by G are not within the

connected sub-graph C, although they are in G. In order for

G to be able to pick apples corresponding to blue nodes, a

viable path connecting them to C needs to be generated. If

the system is designed such that only G can generate paths

to blue nodes by “looking” for them, this distracts G from

the activity of picking already-registered apples within C

Fig. 4: S sampling for free space between blue node and

green node.

Fig. 5: S turning blue node red and connecting it to C.

(existing red nodes). Instead, we propose using S to connect

blue nodes that it has discovered to C using a sampling-based

path planner.

To illustrate, shown in Figs. 4 and 5 is an example case

where S complements G by turning a blue node red. The

large red and blue circles represent the workspace of G and

S, respectively. No assumptions of workspace overlap are

made. The blue node is an apple that was detected by S and

not confirmed by G, hence there exists no path connecting

it to C. S is able to use its depth sensing capabilities to

sample for unobstructed free space between the blue node

to the red nodes in C. In this case, it has found a viable

path by introducing an additional node (shown as a blue

square) and using the proposed edges (shown as dashed

green lines). The additional node is required to direct G

to go around the rectangular obstacle shown in the figures.

The proposed edges and node can be turned solid green and

red, respectively, as the blue apple node is now connected to

C. We achieve this behavior by solving two sub-problems.

The first entails positioning and orienting S to maximize the

number of nodes that share their manifold with the blue node

in the depth map. The second involves using the depth map

in a sampling-based planner.

We take a heuristic approach to positioning S such that,

should a path exist between the target blue node and the

graph, our chances of finding one are maximized. When S

is asked to generate a path from the blue node to the graph,

it assumes a pose such that there is a clear path from itself

to the blue node. A fixed number of samples are drawn from

S’s workspace by perturbing its end-effector’s current pose

and for each sample, the number of nodes in the graph that

can be projected onto the image is evaluated. This provides

an upper bound for the number of nodes that would be visible

from the sampled pose in the absence of any occlusions. We

accept the sample with the largest upper bound and have S

assume the proposed pose. We then check, using the depth

image, if a clear path is detected to the blue node. Using

this idea we also count the number of clear paths detected to

521

other nodes in the graph and check if the number is larger

than some threshold (m). This is a tune-able parameter. If

the checks stated fail, we use the sampled pose with the next

largest upper bound and repeat the process. The upper bound

here is just a heuristic (indicator of promise) that we use in

place of physically assuming each sampled pose for S and

counting the number of nodes visible. Once S assumes a pose

that satisfies the checks stated, RRT-Connect is employed to

grow bi-directional trees and search for a path. If a path

is not found within a fixed time allocated for a pose, S’s

pose is perturbed again and the previous steps are repeated

to continue growing the same search trees dynamically from

different vantage points. To this end, we present the Heuristic

Positioning and In-Image RRT-Connect algorithm (HPIRC).

F. Proposed Algorithm to Connect Blue Nodes

C: Connected sub-graph consisting of nodes (vertices) and

edges

S: S ⊂ R
6 workspace of S

G: G ⊂ R
6 workspace of G

H: H ⊂ R
3 Cartesian space bounds for RRT samples

q: q ∈ H Cartesian space sample for RRT

t: Unconnected target blue node

s: Search arm current pose

p: Sampled search arm pose

m: Threshold for minimum number of visible nodes for a

search arm pose

Algorithm 1 Heuristic Positioning + In-Image RRT-Connect

1: procedure CONNECT GRAPHS(C, t)
2: for j = 1 to J do

3: POSITION SEARCH ARM()

4: for k = 1 to K do

5: τa.INIT(C), τb.INIT(t)

6: qrand ← RANDOM CONFIG()

7: if not(CONNECT(τa, qrand) = Trapped)
then

8: if (CONNECT(τb, qnew) = Reached)
then

9: C ← τa ∪ τb
10: return C
11: SWAP(τa, τb)

12: return Failure

The functions EXTEND and CONNECT (Algorithm

2) are elaborated upon in the original paper on RRT-

Connect [5] with descriptions on NEAREST NEIGHBOR,

NEW CONFIG and RANDOM CONFIG (Algorithm 5).

The CHECK VISIBLE function is used to check if a given

sample q can be projected onto S (camera) at the current state

and determine using the depth image if there exists a clear

line of sight between itself and S. Similarly, using camera

extrinsic and intrinsic properties, the CHECK PROJECTION

function checks, for a given pose of S and sample q,

whether q’s projection would fall in the S’s image in the

Algorithm 2 Connect & Extend from RRT-Connect

1: procedure CONNECT(τ, q)

2: while True do

3: S ← EXTEND(τ, q)
4: if S 6= Advanced then

5: return S

6: procedure EXTEND(τ, q)

7: qnear ← NEAREST NEIGHBOR(q, τ)
8: if NEW CONFIG(q, qnear, qnew) then

9: τ.ADD NODE(qnew)
10: τ.ADD EDGE(qnear, qnew)
11: if qnew = q then

12: return Reached

13: else

14: return Advanced

15: return Trapped

Algorithm 3 Position Search Arm

1: procedure POSITION SEARCH ARM

2: {pj}0:N ∼ SAMPLE SEARCH(s)

3: {pj}0:N ← SORT SAMPLES({pj}0:N)
4: for each pj do

5: MOVE TO(pj)

6: if CHECK VISIBLE(C, t) then

7: break

absence of obstacles. This information is used to calculate

the aforementioned upper bound on the number of visible

nodes for a given pose of S. The RANDOM CONFIG

(Algorithm 5) function is used to generate samples in the

Cartesian workspace of G. To do so, it draws a sample

from a uniform distribution in volume H. Although we

have used a simple sampling technique for this application,

H itself can be a more expressive heuristic function that

biases samples being drawn for the RRT planner. We have

tuned H such that samples are not drawn too far from the

trees (e.g behind the arms). Smart sampling heuristics can

reduce the number of wasted samples and, therefore, speed

up planning. If the sample lies in G and if it is visible

to S (using depth), it is returned (rejected and re-sampled

otherwise). The NEW CONFIG function is used to generate

a sample in the direction of qnew from qnear at some pre-

detemined distance ǫ and add an edge between qnew and

Algorithm 4 Sampling Search Space

1: procedure SAMPLE SEARCH

2: while True do

3: p ∼ PERTURB(s)
4: if pi ∈ S and CHECK PROJECTION(t, pj)

then

5: break

6: return pi

522

Algorithm 5 Random Config

1: procedure RANDOM CONFIG

2: while True do

3: q ∼ uniform(H)
4: if q ∈ G and CHECK VISIBLE(q) then

5: break

6: return q

qnear. The accepted sample has to pass collision checks

and must be in G. We apply the collision constraint using

the function CHECK VISIBLE. The SAMPLE SEARCH

function (Algorithm 4) is used to draw samples obtained

by random perturbation of S’s camera pose that lie in S and

satisfy CHECK PROJECTION.

G. Finite State Machine

The states and transitions of the designed finite state

machine (Fig. 6) are described briefly in this section.

INITIALIZE: This is the first state that is entered

when the state machine (SM) is run. It initializes the arms,

hardware handling objects and the graph.

SIMPLESCAN: This is a scanning state where the

arms go through a predetermined scan pattern to start

populating the graph with nodes and edges.

CONTINUE: In this state, the number of apples remaining

in the graph is checked. If the number is larger than 0,

the machine is transitioned into PLAN. Otherwise, the

experiment is concluded as there are no more apple nodes

remaining in the graph.

PLAN: The PLAN state runs Dijkstra’s algorithm to

compute shortest path to the nearest apple with the current

G location as source (see 7). Unsurprisingly, the search is

conducted within C as this is the space G is limited for

traversal. If all apples within within C are exhausted, the

machine is transitioned into the EXTEND state.

TOAPPLE: Once a target apple is provided, in this state,

the grab arm is moved along the nodes in the path generated

by the PLAN state. This is done until the parent node of the

target apple is reached.

REACHGRAB: In this state, G is first made to look

toward the target apple node for confirmation - it runs

a detection and localization loop to confirm if an apple

exists at the expected location. If an apple is detected at

the location, G uses visual servoing to approach the targer.

If this is successful it transitions into the DROP state. If

no apple is detected, the corresponding node is changed

from red to green and the machine is transitioned into the

CONTINUE state.

DROP: The DROP state is used to perform a series

Fig. 6: Finite state machine.

Fig. 7: Graph search using Dijkstra’s algorithm.

of action to represent the grasping and dropping of the

apple. As actual grasping of apples is outside the scope

of this research, motions that mimic grasping are effected

in this state. This includes G dropping the apple at a set

home location. This can be modified to drop the apple upon

disconnection.

EXTEND: The EXTEND state is used to run HPIRC

(Algorithm 1) and generate paths to unconnected (blue)

nodes.

While the SM is designed primarily to schedule tasks for

G, the HPIRC algorithm is run concurrently on the search

arm to continuously seek blue nodes and search for paths.

III. RESULTS

This section presents preliminary results from computer

simulation and experimental testing.

A. Simulation

The simulation set up in VREP includes two 6-DOF robot

arms (UR5 models) with bases positioned approximately

1.2 metres apart and each arm equipped with an RGB-D

camera. We use a 3D model of a tree populated with red

spheres (as proxies for apples) to test and develop the robotic

system in a simulated unstructured setting. Simple machine

vision techniques involving color-based image segmentation

and Hough transforms from OpenCV are applied to RGB

images to detect red spheres. They are localized in a global

coordinate frame using depth information and known camera

523

Fig. 8: Simulation setup in VREP.

Fig. 9: Camera feeds (left) and graph building (right).

poses. Shown in Fig. 8 is the example scenario discussed in

this section. The two apples in the scene are labelled A and

B. The grasp arm G and search arm S are labelled as per

their abbreviations. This labelling convention is used for the

remainder of this section. Fig. 8 indicates the state of the

scene when the simulation is initialized; G positions itself

looking forward toward the tree, beginning its predetermined

scan routine as S is also seen beginning its scan whilst facing

G. G’s scan routine for this experiment entails pitching its

camera up and down while translating toward S in small

steps.

In Fig. 9, the panel images to the left have been recorded

from a feed from S’s (top) and G’s (bottom) cameras during

the simulation. The image to the right depicts what the graph

records; the base of G and S are shown in red and blue

respectively, apple B (blue square) has been discovered by

S but has not been seen by G whereas A (red square) has

been registered and added into C by G. The green squares

represent positions occupied by G at different times during

the simulation thus far.

After G finishes its scan, it uses C to approach and “grasp”

apple A. It then performs a “drop” maneuver and confirms

that no apples remain at the location previously occupied by

A. This node is turned green. The search arm uses HPIRC

to search and produce a path using the depth map. This is

shown in Fig. 10; the image in the top left is a snapshot

of the RGB feed supplied to S and the bottom left is that

of the depth feed. The image to the right shows the newly

generated tree that connects the blue node B to C. This is

shown clearly in Fig. 11.

Fig. 10: Camera (top-left) and depth (bottom-left) feeds from

S and generated RRTs (right).

Fig. 11: RRT generated using S’s depth feed.

B. Experiment

The experimental setup includes two UR5 arms (6-DOF)

each equipped with an Intel Realsense D435 RGB-D camera

in an eye-in-hand configuration. Artificial apple trees are

used to simulate an agricultural setting. Apples are detected

using a custom-trained version of deep learning architecture

YOLO [11] and localized using depth readings from the

cameras. The apple detection and localization pipeline is

elaborated in [12].

The environment in Fig. 12 follows a set-up similar to that

shown in the simulation example; only apples A and B are

visible to G during its scan whereas apples C and D are

S’s responsibility. Following the initial scan, Fig. 13 shows

apples A and B (red) have been discovered and registered

by G and, C and D (blue) by S. G uses Dijkstra’s algorithm

to generate a path to A and B, and “picks” these apples one

Fig. 12: Experimental setup in laboratory.

524

Fig. 13: RGB feeds (left) and graph after initial scan (right).

Fig. 14: RGB feeds (left) and graph after A and B are picked

(right).

after the other. These apples are removed from the scene to

allow G to turn the corresponding nodes green (Fig. 14),

leaving C and D to be picked. The top-left and bottom left

images in Fig. 15 show the RGB and aligned depth snapshots

to S. HPIRC is able to leverage the depth map and expand

the graph to connect previously unconnected nodes to C.

The paths to C and D account for the branches that prevent

G from discovering these apples during the initial scan and

force G to maneuver around them to reach the apples.

Fig. 15: RGB (G), Depth (S) feeds (left) and graph updated

by HPIRC using S’s depth image (right).

IV. CONCLUSIONS

This work focuses on solving the problem of path planning in

unstructured agricultural settings using collaborative robotic

arms that build and maintain a graph-based representation

of targets and viable paths with no explicit recording or

characterization of obstacles in the scene. This approach

limits existing popular sampling-based path generation tech-

niques to be applied directly. We bridge this limitation

with HPIRC that deploys a greedy variant of RRT-Connect

over sections of the observed scene, enabling the generation

of paths in increments. Preliminary tests indicate that the

concept is simple to implement, and performs reasonably

well without the addition of more sophisticated heuristics and

optimization. Further testing is required to collect quantita-

tive performance data (success rate, computation time, path

cost) and experiment with various problem settings and path

optimizers.

ACKNOWLEDGMENT

This work is sponsored by the United States Department of

Agriculture under a National Robotics Initiative grant.

REFERENCES

[1] K. J. Ahlin, A.-P. Hu, and N. Sadegh. Apple picking using dual
robot arms operating within an unknown tree. In 2017 ASABE Annual

International Meeting, page 1. American Society of Agricultural and
Biological Engineers, 2017.

[2] X. Cao, X. Zou, C. Jia, M. Chen, and Z. Zeng. Rrt-based path
planning for an intelligent litchi-picking manipulator. Computers and

Electronics in Agriculture, 156:105–118, 2019.
[3] J. R. Davidson, C. J. Hohimer, C. Mo, and M. Karkee. Dual

robot coordination for apple harvesting. In 2017 ASABE Annual

International Meeting, page 1. American Society of Agricultural and
Biological Engineers, 2017.

[4] Z. De-An, L. Jidong, J. Wei, Z. Ying, and C. Yu. Design and control of
an apple harvesting robot. Biosystems engineering, 110(2):112–122,
2011.

[5] J. J. Kuffner Jr and S. M. LaValle. Rrt-connect: An efficient approach
to single-query path planning. In ICRA, volume 2, 2000.

[6] S. M. LaValle. Rapidly-exploring random trees: A new tool for path
planning. 1998.

[7] C. F. Lehnert, A. English, C. McCool, A. W. Tow, and T. Perez.
Autonomous sweet pepper harvesting for protected cropping systems.
IEEE Robotics and Automation Letters, 2(2):872–879, 2017.

[8] T. T. Nguyen, E. Kayacan, J. De Baedemaeker, and W. Saeys. Task
and motion planning for apple harvesting robot. IFAC Proceedings

Volumes, 46(18):247–252, 2013.
[9] N. Noguchi, J. Will, J. Reid, and Q. Zhang. Development of a master–

slave robot system for farm operations. Computers and Electronics in

agriculture, 44(1):1–19, 2004.
[10] S. Paulin, T. Botterill, J. Lin, X. Chen, and R. Green. A comparison

of sampling-based path planners for a grape vine pruning robot arm.
In 2015 6th International Conference on Automation, Robotics and

Applications (ICARA), pages 98–103. IEEE, 2015.
[11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look

once: Unified, real-time object detection. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 779–
788, 2016.

[12] H. Sarabu, K. J. Ahlin, and A.-P. Hu. Leveraging deep learning and
rgb-d cameras for cooperative apple-picking robot arms. In 2019

ASABE Annual International Meeting, page 1. American Society of
Agricultural and Biological Engineers, 2019.

[13] Y. Sarig. Robotics of fruit harvesting: A state-of-the-art review.
Journal of agricultural engineering research, 54(4):265–280, 1993.

[14] R. R. Shamshiri, C. Weltzien, I. A. Hameed, I. J. Yule, T. E. Grift,
S. K. Balasundram, L. Pitonakova, D. Ahmad, and G. Chowdhary.
Research and development in agricultural robotics: A perspective of
digital farming. International Journal of Agricultural and Biological

Engineering, 11(4):1–14, 2018.
[15] Y. Zhao, L. Gong, Y. Huang, and C. Liu. A review of key techniques of

vision-based control for harvesting robot. Computers and Electronics

in Agriculture, 127:311–323, 2016.
[16] B. Zion, M. Mann, D. Levin, A. Shilo, D. Rubinstein, and I. Shmule-

vich. Harvest-order planning for a multiarm robotic harvester. Com-

puters and Electronics in Agriculture, 103:75–81, 2014.

525

