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1 Introduction

This report outlines an approach for using Empirical Mode Decomposition (EMD) to better vi-
sualize and understand the multi-scale dynamics associated with fully turbulent flow. Relevant
previous work on EMD and its applications is covered briefly in Section 2, and the EMD algorithm
itself is described and elaborated upon in Section 3. The code written for this project is validated
against published work in Section 4 and, Section 5 highlights the results obtained on applying EMD
to a turbulent flow field dataset.

2 Previous Work

The EMD method was formally introduced in 1998 [1]. The adaptive technique was stated to
have the ability to decompose complicated nonlinear and non-stationary processes into a finite
number of intrinsic mode functions (IMFs) that can yield well-behaved Hilbert transforms. This
is achieved by basing the decomposition on local characteristic time scales; this allows the process
to be represented in the frequency-time domain where the extracted instantaneous frequencies are
devoid of erroneous harmonics such as those generated from a Fast Fourier Transform. In this
work, the IMFs are defined as a class of functions that satisfy the following necessary conditions to
define a meaningful instantaneous frequency:

1. The functions are symmetric with respect to the local zero mean, and the number of extrema
and the number of zero crossings must either equal or differ at most by one in the whole
dataset.

2. At any point, the mean value of the envelope defined by the local maxima and the envelope
defined by the local minima is zero.

In [9] , EMD is used to study the characteristics of IMFs produced from white noise. It is indicated
that the IMFs generated by EMD are distributed normally and the Fourier spectra of the compo-
nents look identical and cover the same area on the semi logarithmic period scale. This result is
significant in the context of this project as (seen later in this report) similar behavior is observed
from IMFs produced from the turbulent flow dataset. Flandrin et al., reaffirm EMD’s adaptive
capabilities in stochastic situations involving broadband noise in [3] and report that when used on
datasets consisting of fractional Gaussian noise, it acts as a dyadic filter bank similar to those seen
in wavelet decompositions. In [7], Rilling et al., discuss issues with the original implementation of



EMD in [9] and propose algorithmic variations involving stopping criteria, end conditioning and
online implementation. This work describes the different components of the EMD process in a
concise manner allowing the reader to develop an intuition for their functions.

Despite its fairly recent introduction as a data analytical tool and its limited mathematical un-
derstanding, EMD has been used in a wide range of applications involving time-frequency domain
analyses. It has been used to insight in studies such as passenger flow forecasting [3], two-phase
debris flow analysis in landslides [0], melanoma classification optimization [5] amongst many others
in audio engineering, speech analysis, climate studies and medicine.

3 EMD Algorithm

The EMD algorithm recursively detects all local minima/maxima in the given signal, estimates
lower /upper envelopes by fitting a cubic spline through all extrema, subtracts the mean of the
envelopes as a low-pass centerline, thus segregating the high-frequency oscillations as a potential
IMF'. This is continued recursively on the extracted low-pass centerline until a stopping criterion is
reached.

1. Identify local maxima and minima in the signal

2. Deduce an upper and a lower envelope by interpolation (cubic splines)

3. Subtract the mean envelope from the signal

4. Tterate until SD criterion is achieved

5. Subtract the so-obtained intrinsic mode function (IMF) from the signal

6. Iterate on the residual
The images that are shown in this section of the report are from Patrick Flandrin’s slides in [2].

The steps enumerated above are explained in more detail using images. The signal used to perform
EMD on is synthetic and the X axis can be thought of as time and Y as amplitude.

The first step is to identify all local extrema and approximate two splines that define the envelope
of the signal. The maxima (shown in blue) are found and a cubic spline is fit to obtain the upper
bound of the envelope. Similarly, the minima (shown in red) and the respective lower bound for
the envelope are found.
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Figure 1: Identifying extrema and fitting splines to obtain envelope



The mean of the envelope is computed by simple averaging of the two curves. Physically, this mean
(shown in Magenta) is meant to capture the low frequency components and trends on which the
higher frequencies are riding. This is removed from the original signal allowing higher frequencies
to be filtered out. Each such step can be likened to a low-pass filtering process. The residue is
shown in the right of Figure 2.
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Figure 2: Subtracting mean from original signal yields residue

Obtaining the first residue (residue 1) marks the completion of the first iteration to obtain IMF1.
Residue 1 is then treated through the same steps as the original signal to yield a new residue
(residue 2); the extrema in residue 1 are found, curves are fit and the mean is calculated and
subtracted from residue 1.
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Figure 3: Sifting to filter out low frequencies

This recursive low-pass filtering process approaches a polynomial approximation of the lowest fre-
quencies in a given signal. The same allows the algorithm to isolate the highest local frequencies.
A stopping criterion is required to dictate when the sifting process can be halted. The stopping
criterion introduced in the original formulation [1] is:

SD < SDerit (1)
T 2
1 |7 (k—1)(t) — 70 ()]
SD = — (2)
T ; r2 (1)

Here SD is the measure of deviation between two consecutive residues in the sifting process, r is
the data point at time ¢ and k is the iteration.

The residue obtained form the sifting process after the stopping criterion is satisfied is IMF1 (Figure
4, left). IMF1 is then subtracted form the original signal and the steps described till this point
treating the subtracted signal as input. The new IMF obtained is IMF2 (Figure 4, right) and
contains the highest local frequencies from the original signal save those captured in IMF1.
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Figure 4: IMF1 (left) and IMF2 (right)

In the same manner, the IMF2 is subtracted from the signal it was generated from to obtain a
new signal (originalsignal — IMF1 — IMF2) from which IMF3 is extracted. This is continued
recursively until all IMFs are extracted. Figure 5 shows IMFs 1 - 8 and the final residue.
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Figure 5: IMF's 1-8 and Residue

The sifting process is explained in [1] although the paper fails to illuminate on the physical signifi-
cance of over-sifting and "under-sifting’. It is important to note that EMD attempts to maximize
the capture of the highest local frequencies at each time instance in an IMFs. A drawback of the
original algorithm is that the IMFs produced are prone to mode-mixing when spectral components
are closely spaced or due to the presence of intermittence in the components. EEMD [10] and
CEEMD [12] are two noise-assisted variations of EMD that contend to resolve this issue. The
turbulent flow data that is being analyzed in this report records no interruptions in any time scale
and naturally, mode mixing is not observed.



4 Code Validation

The EMD program used in this project was written from the ground up in MATLAB following
the algorithm described in [1]. The code is submitted along with this report. The program is
validated against the EMD code and test cases made available by Patrick Flandrin in [!]. The
results obtained using both the codes are compared for two synthetically generated datasets; the
first is a nonlinear triangular signal with a riding sin wave and the second is a FM signal.

The IMFs produced by both codes are in reasonable agreement, enough for the plots to overlap. The
RMS deviation was found to be 2.16% for the first dataset and 5.65% for the second. Figures 5 and
6 indicate the IMF's obtained from both codes and the absolute value of local deviation to visualize
where the codes do not agree. It was found that for both test cases, the deviations are noticeable
at the edges in IMFs with significant activity at the beginning and end of the record. Future
work to understand and minimize the deviations in IMFs produced should include investigating
sophisticated end-effect conditioning techniques. Despite the deviations in the IMFs produced, due
to the recursive subtractive nature of the algorithm, the reconstruction error is virtually zero in
both cases.



4.1 Triangular Signal
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Figure 5: Comparisons for IMFs 1-3
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Figure 6: Comparisons for IMF4 and residue



4.2 fmsignal
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Figure 7: Comparisons for IMFs 1-3
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Figure 8: Comparisons for IMF's 4-6
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Figure 9: Comparisons for IMF's 7-9
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Figure 10: Comparisons for IMFs 10 and residue
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5 Application to Turbulent Flow PIV Data

This section discusses how the EMD algorithm is applied to PIV data collected in a fully turbulent
shear flow. The data of interest spans a spatial grid of dimensions (17,17) and is recorded for a
length of 1 second at a sample rate of 5khz. The trace at each grid point is treated as a 1 dimensional
dataset and IMF's are derived for each location. Referred to as the Pseudo-Bi-Dimensional Empirical
Mode Decomposition [1 1], each time trace is decomposed independently, without the incorporation
of information from other dimensions (spatial in this case). The stopping criterion shown in Section
2 is used with SD..;; = 0.01. For each grid location, 14 IMFs and residue were extracted. The
animations of the IMFs can be found here: https://tinyurl.com/yblxv9qy

An example where a time trace is decomposed into its IMFs is presented using Figures 11 and 12.
Axes labels are omitted in the interest of saving space as these plots are only used to qualitatively
convey the characteristics of IMFs. A general trend that is easily recognized is the tendency for
local frequencies to reduce with IMF number. In this example, it is difficult to find a pattern in the
signals for IMFs 1 - 3, purely from a qualitative standpoint. From IMF4, however, the signals seem
to behave "nicely” owing to the low frequency structures that appear coherent and less erratic.

Figure 12 consists of the power spectra of the parent signal (data) in black and the power spectra of
the IMFs in color. Each IMF captures a band in the power spectrum of the raw signal, traversing
from high to low frequencies.
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Figure 11: IMFs extracted from a single trace



Power Spectrum of Raw Signal
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Figure 12: Power spectrum of raw signal (top) and power spectra of IMFs(bottom)
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IMF Power Spectra - Center Frequencies and Bandwidths
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Figure 13: IMF bandwidths and center frequencies

The bands occupied by each IMFS in the power band is visualized in Figure 13 (left) using their
center frequencies. The center frequencies of the IMFs appear to lie
log scale. It is seen that the bandwidths follow the same convention.
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Figure 14: Reconstruction error vs modes used for EMD and POD (right)

The RMS reconstruction error is calculated and plotted as a function of the modes used to ap-
. In Figure 14, the RMSE from IMFs and modes obtained using POD
hat EMD is able to produce higher fidelity reconstruction using fewer

proximate the original signal
are compared. It is evident t
components.

No. of Modes

15



6 Conclusion and Future Work

One objective of the project was to understand the EMD algorithm and write a program capable
of producing IMFs. While the MATLAB code has been validated against state-of-the-art imple-
mentations and checked for robustness, there is scope for algorithmic improvements pertaining to
end conditioning and parallelization.

The studies conducted on applying EMD to turbulent flow data reveal the algorithm’s capability
of systematic decomposition based on scale. Due to the homogeneous nature of the dataset, the
implementation of point-wise EMD may be adequate to decompose the 3 dimensional process (2
in space and 1 in time). However, the next step would be to implement a bi-dimensional EMD
algorithm that does take into account the spatial dimension in order to produce IMFs. This
would allow for the analyses of less homogeneous and more interesting flow fields and help build
towards the goal of this project i.e to be able to isolate and study multi-scale phenomena using
EMD. Future work would also involve analyzing each IMF window produced in this study using
2D Fourier transforms and alternative techniques to evaluate the content captured.
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