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Hemanth Sarabu  Optimizing Sailing Trajectories 

Problem Statement: 

The project focuses on developing two algorithms that address the issue of optimizing a sailboat’s 

trajectory when a starting point and destination are given alongside static wind conditions. The 

underlying physics that govern the optimal path of a sailboat for a given set of conditions are highly 

coupled and dynamic, rendering the course very unintuitive to determine. Algorithms that are able to 

produce the path plan that takes the minimum amount of time to complete the course can be very helpful 

and the resulting work is presented in this report.    

Models 

Both algorithms developed in this project use the idea of calculating the Velocity Made Good (VMG) 

as a parameter relating the state of the sailboat at any given time to the time it would take to complete 

a given course. 

Before going into details about how the models work, some basic sailing theory is introduced.  

Velocity Made Good 

It is not possible for boats to sail directly into the wind, requiring the course of the boat to alternate 

between headings. This process is called "tacking" and is used commonly by sailors to make their way 

to a mark that is upwind. On a tack, the sailor will generally point the sailboat as close to the wind as 

possible while still keeping the winds blowing through the sails in a manner that provides aerodynamic 

lift to propel the boat.  

Figure 1: Upwind Tack 

Then the boat is turned away from the wind in slight increments in order to generate more forward lift 

on the sails allowing it to move with greater speed, but less directly toward the destination. This may 

be seen in the schematic diagram depicted in Figure 1.  
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The range of heading that does not produce any significant lift is called the no-go zone. It is indicated 

in red in Figure 2. 

Figure 2: Points of sail – Red indicates no-go zone 

 

The VMG can be calculated by using the following expression where Vtrue is the velocity of the sailboat 

with respect to stationary ground and 𝜃 is the angle between current heading and the direction to 

destination. 

𝑉𝑀𝐺 = 𝑉𝑡𝑟𝑢𝑒 ∗  𝑐𝑜𝑠𝜃 

However, the relationship between the true velocity of the sailboat and the true wind velocity depends 

on what assumptions are made. Some instances take into consideration the fact that a sailboat’s Speed 

Over Ground increases or decreases relative to the wind direction. In theory, a sailboat’s speed increases 

while sailing from upwind to a downwind direction. Other parameters to factor in include the sail boat’s 

specifics that depend on the make and design of the boat. These are the 'Velocity Increase Constant', 

‘No – Go Zone’ and ‘Degree Interval’, which are normally provided by the manufacturer. The physical 

meaning of this constant expresses 'the sail boat increases speed by 10% for every X degrees from the 

wind'. Considering these factors, a True VMG can be calculated using the equations: 

For Upwind: 

 

 

For Downwind: 
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Where, 

𝑉𝑀𝐺 = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑀𝑎𝑑𝑒 𝐺𝑜𝑜𝑑 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛  

𝑉𝑤 = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑊𝑖𝑛𝑑  

𝜃𝑠 = 𝐴𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 ℎ𝑒𝑎𝑑𝑖𝑛𝑔 𝑎𝑛𝑑 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛  

𝜃0 = 𝑁𝑜 − 𝑔𝑜 𝑧𝑜𝑛𝑒  

𝜃𝑦 = 𝐴𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑤𝑖𝑛𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 ℎ𝑒𝑎𝑑𝑖𝑛𝑔  

β = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

𝑖 =  𝐷𝑒𝑔𝑟𝑒𝑒 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙   

 

In the expressions shown above the no-go zone (𝜃𝑜) , Degree Interval (i) and Velocity Increase 

Constant (β) are usually provided by the manufacturer. As these are specific to the boat’s design, 

commonly quoted values are used throughout this project. 

Shown below is a plot of the resulting VMG when 𝜃𝑠 (theta_rd) is varied for the case of sailing upwind 

(in blue) and for the case of sailing downwind (in yellow). The relative angle to the wind is kept constant 

at 40° or 0.698 rad. 

 

Figure 3: VMG vs Angle relative to destination 

The plot indicates that a higher VMG is achieved in the downwind case than in the upwind case as 

expected from the model. 

In order to model the no-go zone, the VMG calculating function incorporates an if statement that checks 

and assigns a value of zero if the boat’s heading is in this region.  
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Figure 4 shows the relationship between the VMG and relative wind angle (theta rw) keeping 

bearing to destination a constant. It is important to note that in practice if the destination is kept 

at a constant location along with wind direction, changing the bearing of the boat changes both 

relative angles (with wind and destination). However, the plot shown below does not have a 

varying relative angle to destination implying the wind direction is only changing whereas the 

bearing of the sailboat and the location of the destination are kept constant. 

  

Figure 4: VMG vs Relative Wind Direction 

 

Assumptions 

In order to simplify the optimization problem, the following assumptions are made and incorporated 

into the models: 

1. True velocity of boat at any point of time is a function of the velocity of wind and heading 

relative to wind direction only. This implies that at any point these are the only two variables 

required to calculate how fast the boat will be moving with respect to ground (true velocity) in 

the direction it is moving. 

2. Effects of momentum are not considered. As the expressions shown earlier allow for the 

calculation of velocity instantaneously, the time-dynamic effects are not modelled. This means 

that acceleration and deceleration are not taken into account and if the boat moves from a current 

position to the next position, the momentum is not carried or lost but the position’s assigned 

momentum is taken up. 

3. Effects of drag are not considered. The effects of drag considered are only those specified by 

the velocity increase constant and the no-go zone, both provided by the manufacturer. The 

effects of drag due to the wind and the water due to the form of the boat are not taken into 



6 
 

Hemanth Sarabu  Optimizing Sailing Trajectories 

consideration. In real life however, this phenomenon will have significant effects limiting the 

maximum velocity of the sailboat. 

4. Effects of manoeuvres on the momentum of the sailboat are not considered. For example, 

tacking causes the sailboat to lose momentum due to the associated drag and loss of lift during 

the procedure. The loss of momentum is a transient process and is not modelled for this project. 

Decision Variables 

The objective of the algorithms is to produce paths that take the least amount of time to complete a 

given course. In order to describe the path taken by the sailboats, the variables required are the x and y 

coordinates of the sailboat at a given time. Instead of determining the coordinates for each time step, 

they are determined in consecutive steps- this means the coordinates Xk+1 are determined relative to Xk 

in distance and direction as opposed to determining Xk+1 as a function of time step tk+1.   

The problem of producing a locus of X,Y coordinates that are successive in nature can be transformed 

into producing a direction vector and a distance vector from each of the points to the next point. An 

example of this is-  if Xk is known, in order to determine the next position Xk+1 a direction vector and a 

step size are sufficient and required with relation to Xk. Hence the modelling problem is reduced to 

finding the optimal sequence of direction vectors (heading) if the step size is set to be constant.  

In other standard optimization problems tackled during the course, the design space did not include a 

time dimension. However, this problem indeed has a time dimension and the variable (heading) will 

have to be determined as the time marches forward (in distance steps and not time steps). 

Objective 

The objective of the algorithm is to find the path of least resistance, or the path that takes the least 

amount of time to complete a given course. The time taken is calculated in a discretized manner: The 

velocity of the sailboat is found for each step and is used to divide the step size. 

𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑘  =  
𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑡𝑒𝑝
 

The time steps are added for the duration of the course in order to register the total time taken. 

𝑡𝑖𝑚𝑒 𝑒𝑙𝑎𝑝𝑠𝑒𝑑 =  𝛴 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑘  

The objective can then be expressed as:  

Minimize: time elapsed 

The objective is to optimize the path to achieve the lowest time elapsed value for any given course. In 

order to study the behaviour of the model and the algorithms, 7 cases are used to investigate. 

In addition to reducing this parameter, one of the models is developed to first prioritize ease of 

navigation and then minimize the time elapsed parameter. The difference in performances of both 

models is investigated to understand the trade-off. The ease of navigation cannot be quantified; hence 

both the models are inherently different. 
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Case 1 – Upwind 

Sailing prowess is often associated with how well a sailor is able to navigate their way to a mark directly 

in the upwind direction dead against the wind. The first case is used to test this very performance metric 

of the algorithms used. It is important to remember that it is not possible to sail directly into the wind 

(no-go zone). The starting point is at 0,0 and marked in green with the destination marked red. 

Figure 5: Test Case 1 

 

Case 2 – 45deg  Upwind 

The second case tests the algorithms behaviour subjected to a destination that is upwind 45 

degrees into the wind. This is right outside the no-go zone and the optimal path is fairly 

predictable.  

Figure 6: Test Case 2 
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Case 3 -10deg Upwind 

Case 3 tests the algorithms’ ability to produce the optimal path when destination is upwind and 

in the deadzone. Unlike the earlier cases, predicting the optimal path without computation, 

using pure intuition can be extremely difficult.  

Figure 7: Test Case 3 

 

Case 4 - Downwind 

Case 4 requires the sailboat to navigate downwind. The optimal path for this scenario is fairly 

simply to predict, however this test case is included for completeness and to see if the 

algorithms produce any interesting, unexpected results. 

Figure 8: Test Case 4 
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Case 5 – 45deg Downwind 

Case 5 involves sailing from origin 0,0 to the destination which is located downwind at a 45 

degree angle. 

Figure 9: Test Case 5 

 

Case 6 – 90deg 

Case 6 involves sailing from origin 0,0 to the destination located downwind perpendicular to 

the direction of the wind. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Test Case 6 
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Case 7 – Race Course 

The final scenario is test case 7. Here the algorithms are required to start at the origin (0,0) and touch 

each of the marks in an anticlockwise direction. The marks are colored red and the path marked in 

blue is only displayed to indicate the shape of the track. The boat is not required to follow the blue 

path. The course incorporates elements of the cases seen previously: upwind into the no-go zone, 

downwind at extreme angles to wind direction. 

Figure 11: Test Case 7 

 

Constraints 

This path optimization problem only has one constraint – at no instance should the boat bear a heading 

into the no-go zone. In real life however, during a tack, the boat indeed faces the no-go zone briefly 

before regaining lift in the sails. It is its momentum that allows the boat to steer away from the no-go 

zone and into a heading that permits forward motion. In the models presented in the report, it is 

important to remember that the boat’s momentum terms are not incorporated. This means that if at any 

point the algorithm produces a path that involves a heading into the no-go zone, it loses its velocity and 

cannot make further steps. The algorithms get past this flaw by limiting the heading from entering the 

no-go zone at all times. 

This constraint is expressed as: 

When travelling upwind, 

𝜃𝑤 > 𝜃𝑜 

Where, 

𝜃𝑜 = 𝑛𝑜 − 𝑔𝑜 𝑧𝑜𝑛𝑒  

𝜃𝑤 = ℎ𝑒𝑎𝑑𝑖𝑛𝑔 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑤𝑖𝑛𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛  
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Model Description 

Two inherently different models are used to approach the problem. As no suitable and freely available 

algorithms were found on the public domain, both models have been developed and coded from the 

ground up using first principles of sailing and optimization.  

Model 1 – Single Tack Method 

The Single Tack Method (STM) is developed so that the path produced by the model is extremely easy 

to navigate. This is achieved by implicitly allowing the algorithm to produce a path between two points 

that incorporates a maximum of one tack (i.e. two leg journey). The algorithm is then required to 

produce the tack length and angle that results in the minimum time elapsed value. It is important to note 

that the manner in which ease of navigation is incorporated into this model is by limiting the number of 

tacks. By increasing the number of tacks, the solution process can get very complex.  

To explain this, a scenario is discussed – If arbitrary location A is considered the starting point and a 

destination is set at B, to produce a path that can only have a single tack, the problem is reduced to 

finding a point Ts (tack point) such that when the boat travels from A to Ts, Ts to B, it takes less amount 

of time than if the boat sailed from A to T, T to B. Here T is an arbitrary tack location.  

If two tacks were allowed, this would mean that the algorithm would have to find the best combination 

of two points that result in the smallest time elapsed value. Due to the highly coupled nature of the 

problem, navigating through two dimensions to find the best combination would be very difficult, and 

hence is out of the scope of this project. 

 

Algorithm Architecture 

A brief description of the algorithm is discussed in this section. This model requires three routines to 

arrive at the solution. The first routine required is called st_2.m  which is provided in Appendix A. The 

starting point and the current destination is specified in this routine. The programme then calculates an 

initial feasible point for the tack location. The model employs a pattern search algorithm incorporating 

an accelerating/decelerating step size. The pattern search algorithm requires to start in the feasible 

region because starting in the no-go zone results in an infinite path time value. Once, the pattern search 

algorithm is initialised, the path time is calculated in each of the probe directions (x+,y+,x-,y-) using 

the function handle pathtime.m (Appendix B). This function handle accepts the starting point of the 

sailboat, the tack point and the destination point and integrates along the two legs of the journey to find 

the time elapsed (or the path time). This is the objective function value that needs to be minimised. With 

the objective function values from all four probes, the pattern search algorithm chooses the directions 

in x and y that favour the minimizing of the path time and determines the new tack point. Depending 

on the search directions (in X and Y) recorded, the pattern search algorithm updates the acceleration 

terms to reduce the number of pattern moves required to achieve convergence. Once convergence is 

reached, the optimal tack point (xt) and the optimal time elapsed values are returned.  
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This is continued for all such points around the course. The routine single_tack_path.m (Appendix C) 

is used to plot the path produced by this algorithm. 

 

Figure 12: Single Tack Method Algorithm  

Model 2 – Continuous VMG Maximization 

In contrast to the previously discussed model, the VMG maximization model (VMGM) works on the 

principle of determining the optimal heading at any given point and then taking a step in that direction, 

and repeating the process until the destination is reached. In a sense, if the previous model only allowed 

for one tack point (two legs) with the tack lengths and angles as variable, this method allows unlimited 

number of legs (or tacks) but the tack length is constrained to a small value. This enables the path 

determined to be a curve, if it is what results in the optimal path time. At each step, the optimal heading 

is determined using a search algorithm that is similar to a line search algorithm. However, the search is 

conducted at intervals of π /90 radians (2 degrees) in a 2π (360 deg) range instead of in a line bracket. 

Algorithm Architecture 

In order to obtain the path using this model, three routines are required. The main routine is called 

travel.m and is supplied in Appendix D. This routine accepts a list of all the target markers specified in 

coordinates and creates a tracking variable that is able to update the active target marker based on 

whether or not the path has ‘touched’ it. This means that the tracker will let the algorithm know if the 

path has not passed any of the markers in order. The tolerance can be varied.  
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Once the markers are specified, the travel routine calls on the vmg_2.m function handle Appendix E 

This handle accepts the current position of the sailboat and the active target as arguments and returns 

the optimal heading that should be pursued. It also provides the velocity attained by the sailboat, which 

is used to calculate the time step in the travel routine as well as the cumulative time elapsed. The heading 

is used by the routine to march the simulation forward and produce the optimal path.  

 

 

 

Figure 13: Continuous VMG Maximization method 
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Results and Verification 

For this project, in order to normalise the results, the velocity of the wind has been set to 1m/s. The 

results are presented and discussed in this section. 

Convergence and Starting Points 

In the VMGM method, the optimal path is determined by the algorithm only using the starting point 

and the location of markers. The path does in fact change with the starting point of the course, as is 

expected. However, the VMGM method does not use an optimization model where initial ‘guesses’ are 

required and is able to determine and build the path only based on the sailboats current location. Hence, 

this method is highly repeatable with no question of obtaining different results if different initial guesses 

are used.  

However, the STM does require an initial guess for the tack point that is it be optimized to obtain the 

least path time. There is no need for the user to manually make this guess as it would require a fair bit 

of computation and can be an inconvenience. So, an initial feasible point calculator has been 

incorporated into the routine st_3.m that is able to do this for the user. Upon extensive testing for 

multiple cases, it is seen that the calculator is accurate and reliable 100% of the time. Nevertheless, in 

order to test whether the optimization algorithm is able to converge to the same optimal tack points for 

different starting points, the effects of different starting points are studied. Only three test cases are 

shown in this section. Plots for the remaining test cases are supplied in Appendix F. 

 

Figure 14: Convergence for Case 1 

It is seen that the algorithm converges to the same location of the tack point (xt) within a 2% error and 

is very reliable for test case 1. 
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Figure 15: Convergence for Case 3 

Test case 3 is an interesting one as the sailboat is required to travel to a target marker that is 10deg into 

the wind, in the no-go zone. It was suspected that the STM algorithm would have trouble converging, 

operating around the no-go zone but it is seen that this is not the case. Convergence has been achieved 

for all starting points tested. The tack points converged to within 0.1% for Test Case 2. 

 

Figure 16: Convergence for Case 4 

Similar to the performance seen in the earlier cases, the sensitivity to the initial guesses of the tack 

point is negligible and has virtually no effect on convergence, 

 



16 
 

Hemanth Sarabu  Optimizing Sailing Trajectories 

Optimal Paths  

The optimal paths obtained are discussed in this section. For each case, the path produced by the STM 

method and the VMGM method are presented. The locus produced by STM is colored Magenta whereas 

that produced by the VMGM method is coloured blue. All cases have starting point at origin (0,0). The 

origin and destination are indicated by large red circles. 

Case 1 

 

Figure 17: Optimal Paths for Case 1 

For Case 1 where the sailboats are required to reach a destination directly upwind to the starting point, 

the optimal path produced by both methods are what is expected. It is seen that the tack angles for 

both paths are in fact the same. Considering both models approach the problem differently, it is 

assuring to find that both use the same tack angles. However, the obvious difference is that the 

VMGM method tacks many times where as the STM only tacks once.  

  Case 1   

  STM VMGM 

Time 
(s) 

6.314112 4.29286 

 

The times obtained indicate that the VMGM method is able to produce a superior, quicker path. This 

es expected because the VMGM method is not restricted by the number of legs it can have in its path 

and continuously tries to optimize for max VMG.  
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Case 2 

In this test case, the sailboat is required to start at origin and reach a destination that is 45 deg upwind. 

Although the paths taken by both algorithms are similar, the tack angles are in fact different if one were 

to look closely. The VMGM method (blue) approaches the destination at a higher angle and tacks just 

before reaching the destination, whereas the STM (magenta) tacks right at the beginning of its journey 

approaches the destination at a shallower angle. 

Figure 18: Optimal Paths for Case 2 

In this case as well, the VMGM method proves to be superior. It is surprising that there can be such a 

significant difference in the times with what appears to be a fairly small difference in trajectory. 

However, upon conducting calculations, integrating along these paths with finer step sizes to validate 

the obtained times, it was confirmed that the step sizes are sufficiently small and the obtained times are 

valid as per the model. 

 

 

 

 

 

 

 

 

 

 

  CASE 2   

  STM VMGM 

TIME (S) 8.506722 5.7529 
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Case 3 

This test case involves sailing to a destination that is 10deg upwind of the starting point (origin). It is 

interesting to see that the paths taken by the models are completely different. The tack angles, however 

appear to be similar. As seen in test case 1, the VMGM method takes advantage of the freedom on the 

number of tacks it can use and produces a more efficient path.  

 

Figure 19: Optimal Paths for Case 3 

Once again, the VMGM method produces a more efficient path. It is important to take note of the fact 

that tacking actually drains momentum from the boat. In reality, the VMGM produced path could 

actually be less efficient than its competitor purely due to the number of tacks.  

 

 

 

The VMGM method prefers to stay close to the destination in the X direction and tack continuously 

upwind whereas the STM method tends to sail away and then towards to destination. 

 

 

 

 

 

 

 

  CASE 3   

  STM VMGM 

TIME (S) 6.347779 4.138 
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Case 4 

It is very interesting to see this behaviour in test case 4. In practice, sailors gybe their way to a target 

that is directly downwind to the starting point. Gybing is the opposite of tacking, where the heading is 

alternated from side to side in order to maximise the ground velocity and the velocity made good. Both 

algorithms have produced paths that gybe down from origin to the target at (0,-10). 

 

 

 

 

 

 

  

  

 

 

 

 

 

Figure 20: Optimal Paths for Case 4 

The VMGM method is seen to take many more gybes and behave as indicated in previous cases whereas 

the SMT method moves away from the destination first and then changes course to approach it. 

 

 

 

VMGM method produces a path shorter in the time dimension, however the difference between the 

results is not as high as that seen in other test cases. It is also observed that the times obtained for this 

test case are also the shortest of all cases. 

 

 

 

 

 

 

 

  CASE 4   

  STM VMGM 

TIME (S) 3.508444 3.2193 
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Case 5 

In test case 5, the sailboat is required to reach the destination that is 45deg downwind. While the VMGM 

method produces a smooth curve, the SMT method approaches the destination head on. 

 

Figure 21: Optimal Paths for Case 5 

It is clear that the SMT method does not tack in this test case, this only means that the optimal tack 

point located by the algorithm lies in between the destination and the starting point, thus producing a 

straight line. As expected, the VMGM method yields the better path due to its ability to produce curves.  

 

 

 

 

 

 

 

 

 

 

 

 

  CASE 5   

  STM VMGM 

TIME (S) 6.203451 5.7052 
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Case 6 

Test case 6 involved navigating from starting point at the origin to a destination that is perpendicular 

to direction of wind. IN this case the destination is located at (10,0). 

 

Figure 22: Optimal Paths for Case 6 

As expected, the VMGM method pursues the maximization of VMG. This causes it to constantly keep 

manoeuvring to stay optimal. In contrast, the STM method algorithm produces a path that is virtually a 

straight line. In practice, it is common to see sailors taking a head on approach in a scenario such as 

this. 

 

 

 

 

 

 

 

 

 

 

 

 

  CASE 6   

  STM VMGM 

TIME (S) 5.448371 4.5236 
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Verification of Optimality 

The VMGM method employs a search algorithm that is similar to a 1 dimensional line search in 

cylindrical coordinates. However, this is done iteratively at each of the positions until the destination is 

reached. Due to the nature of the search algorithm used and because very fine increments were used, 

optimality at all points is certain. For the STM method however, it is important to check if optimality 

is achieved because it is based on a pattern search algorithm. In order to assure optimality, the 

acceleration terms and coefficients were monitored and altered throughout the process of developing 

the algorithm. It also incorporates a subroutine that detects and prevents the tack point from entering 

the infeasible region (no-go zone). To confirm optimality, the gradient of objective function (time) and 

the hessian matrix are produced for test cases 1 through 6. 

 

Case Gradient Vector Hessian Matrix 

1 

-2.09E-04 3.49E-03 1.19E-06 

8.35E-06 1.19E-06 4.91E-03 

        

2 

-1.86E-04 4.79E-03 3.74E-04 

1.81E-03 3.74E-04 6.74E-03 

        

3 

-2.07E-04 3.51E-03 5.24E-04 

1.46E-03 5.24E-04 4.94E-03 

        

4 

-2.34E-04 3.51E-03 5.24E-04 

-1.04E-07 5.24E-04 4.94E-03 

        

        

5 

-7.76E-05 3.86E-03 7.31E-04 

3.41E-04 7.31E-04 5.43E-03 

        

6 

1.29E-03 3.30E-03 4.59E-04 

-3.47E-04 4.59E-04 5.71E-03 

 

It is seen that the gradients are in very small order of magnitude, approaching 0 and the Hessian matrix 

terms are positive and semi-definite. These are the minimum requirements that need to be satisfied in 

order to confirm optimality. Although these requirements are satisfied by the obtained solutions, the 

author has generated random paths, head on paths and created paths based on the solutions with slight 

deviations to see whether the obtained objective value is lower. This was not the case, confirming that 

the results lie in local minima at the very least. By starting the solution at different ‘guess points’ for 

the tack position (as discussed in an earlier section) it was confirmed the solutions converged to same 

coordinated. This further improves likelihood of the obtained solutions being optimal. 
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Case 7 - Racecourse 

Cases 1 through 6 are used to create test scenarios that can be validated on their own so that when a 

composite course is created with elements from each of these, one can be more confident of the results 

obtained.  

Case 7 involves completing a racecourse starting at origin (0,0) and touching each of the targets in an 

anticlockwise manner. It is seen that the paths produced by the models are very different. The VMGM 

model tacks toward the initial destination (20,50) first, maintains bearing until the target is dead north. 

Then it appears to generate tacks with really small tack lengths (high frequency) to arrive at the 

destination. The STM method tacks away from the no-go zone, clears it and then tacks bearing towards 

the first target. The paths from the second (20,50) to third targets (-100,0) and the third to fourth (20,-

50)  targets are in fact similar (but mirror images). In the downwind direction the VMGM method tends 

to curve to the same X coordinate as the destination and then proceed towards it in the Y direction. The 

STM however tacks very slightly, late as it approaches the destination at a shallower angle. 

 

Figure 23: Optimal Paths for Case 7 
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The final legs from (20,-50) to the origin (0,0) are again similar to the first legs from (0,0) to (20,50). 

This is expected as the points are symmetric about the Y axis. The VMGM method executes a tack to 

position the destination directly north of it. And as seen earlier, it manoeuvres using a high frequency, 

small length tacks to reach the destination. 

Figure 24: Optimal Paths from (0,0) to (20,50)  

 

As expected, the VMGM method has produced a path resulting in a shorter path time. 

 

 

 

 

 

 

 

 

 

 

  CASE 7   

  STM VMGM 

TIME (S) 6.347779 4.138 
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Solver Performance 

The solver performance for this project is characterised by the path time and computation time. Shown 

in figure 25 is the path times obtained for the 6 test cases presented earlier. Test case 7 has not been 

included as it is a combination of the others and is significantly longer than the other test cases. 

 

Figure 25: Path Times for Test Cases 

The VMGM model has consistently produced the more desirable path, as seen from the plot shown 

above. Although the difference is not much, it is important to remember that these cases are tested for 

fairly short courses. As the course size increases, the times are expected to vary linearly. This is similar 

to how a lead of a few tenths of a second in a Formula 1 Grand Prix lap stack up over the entire race, 

creating a vast gap towards the finish. On the other hand however, the VMGM method ignores the fact 

that high frequency manoeuvres drains the momentum (speed) from the sail boat. It would be very 

interesting to quantify these effects and model them in a future piece of work.  

The VMGM solver is also easier to use, and more robust than the STM solver. It produces highly 

repeatable results whereas the STM algorithm still needs to calculate an initial feasible point. The 

VMGM solver also deals with the no-go zone in a hassle-free manner whereas the STM algorithm 

requires additional control terms to prevent instability. 
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The computation time for each run was recorded and plotted. This is shown in figure 25. The STM 

solver uses a function handle that calculates the path time by integrating over a set of discretized line 

segments. This is a computationally expensive process which happens simultaneously in the VMGM 

algorithm as it marches forward. 

 

 

Figure 25: Computation Times for Test Cases 

The iterations were not plotted because each algorithm has multiple inner iterations running at the same 

time. Furthermore, computation time is a much more intuitive and tangible parameter to compare 

algorithms. 
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Use of Alternate Solvers 

During the start of the project, the solvers used to conduct the optimization in the STM model were 

based on the method of steepest descent (with line search) and the pure Newton method. The method 

of steepest descent was incredibly sensitive to the starting points. Even if the initial points lied in the 

feasible region, the algorithm would soon become unstable and enter an infinite loop. The reason behind 

this is the way the no-go zone is modelled. Instead of using a Penalty-Barrier approach, the no-go zone 

is modelled as a step function that drops the velocity to zero in the region. This singularity is not handled 

well by the method of steepest descent or the Newton methods. For the starting points that the method 

of steepest descent did work for, convergence was achieved very quickly and the likelihood of the 

solution being optimal was very high. The Newton method performed even poorer. Most trials and 

starting points ended in infinite loops as the algorithm struggled to calculate the Hessian matrices. Codes 

supplied in Appendix G. 

 

Figure 27: Successful run of steepest descent  

 

 

Figure 28: Infinite loop due to starting point sensitivity 
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Appendix A 

%Routine to determine the best tack point between two marks and valculate time 

x_tar_c = [0,0];  %active destination 

x0 = [20,-50];    %starting point 

 

%calculating initial xt--------------------------------------------------------- 

  vect_tar = (x_tar_c - x0);    %generate vector to active target 

  mid =0.5*(vect_tar) + x0;        %place point in the middle 

  deviation = ((x_tar_c(2)-x0(2))^2/(x_tar_c(1)-x0(1)))/(atan(deg2rad(15)));  %define deviation of 

point from vect_tar 

 

  xt0 = [-deviation,0] + mid; %initial tack point 

  xt = xt0;                    

 

  %Introducing probes for pattern search 

 

  plength_x  = [10,0]; %probe length in x 

  plength_y  = [0,10]; %probe length in y 

 

  iter=0; 

  ax=0.1;         %initial stepsize 

  ay=0.1;         %initial stepsize 

   

  adpxt=1;        %initialise acceleration determining parameter in x 

  adpyt=1;        %initialise accleration determining parameter in y 

 

while iter<100    %set maximum number of iterations 

   

  %calculate path times at probes 

pathtime_xtc = pathtime(x_tar_c,x0,xt); %path time if current tack point is used 
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pathtime_xtc_xplus = pathtime(x_tar_c,x0,xt + plength_x);   

pathtime_xtc_xminus = pathtime(x_tar_c,x0,xt - plength_x); 

 

pathtime_xtc_yplus = pathtime(x_tar_c,x0,xt + plength_y); 

pathtime_xtc_yminus = pathtime(x_tar_c,x0,xt - plength_y);  

 

%probing in x and updating xt 

 

%find minumum pathtime 

if min([pathtime_xtc, pathtime_xtc_xplus, pathtime_xtc_xminus]) == pathtime_xtc 

  xt = xt; 

  sx = 0;     %set search direction 

  adpx = 0;   %set acceleration term 

   

 elseif min([pathtime_xtc, pathtime_xtc_xplus, pathtime_xtc_xminus]) == pathtime_xtc_xplus 

   

  sx = +1;    %set search direction 

  adpx = +1;  %set acceleration term 

   

  elseif min([pathtime_xtc, pathtime_xtc_xplus, pathtime_xtc_xminus]) == pathtime_xtc_xminus 

   

  sx = -1;    %set search direction 

  adpx = -1;  %set acceleration term 

   

  endif 

  

%probing in y and updtaing xt 

  

  if min([pathtime_xtc, pathtime_xtc_yplus, pathtime_xtc_yminus]) == pathtime_xtc 

   

  sy = 0;   %set search direction 
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  adpy = 0; %set acceleration term 

   

 elseif min([pathtime_xtc, pathtime_xtc_yplus, pathtime_xtc_yminus]) == pathtime_xtc_yplus 

   

    sy = 1; %set search direction 

  adpy = 1; %set acceleration term 

   

  elseif min([pathtime_xtc, pathtime_xtc_yplus, pathtime_xtc_yminus]) == pathtime_xtc_yminus 

   

    sy = -1;  %set search direction 

  adpy = -1;  %set acceleration term 

     

  endif 

    

  iter = iter + 1; 

 

  %plot(xt(1),xt(2)); hold on; 

   

   

  ax=ax*1.15^(adpx*adpxt);  %update acceleration in x 

  ay=ay*1.15^(adpy*adpyt);  %update acceleration in y 

 

  xt_p=xt;    %update xt previous 

 

  xt = xt + [ax*sx,ay*sy];  %update tack position 

   

  

 adpxt=adpx;               %store acceleration terms 

  adpyt=adpy;                

   

  minpathtime = pathtime(x_tar_c,x0,xt);  %calculate corresponding minpathtime 
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  minpathtime_p = pathtime(x_tar_c,x0,xt_p); 

  %plot(iter,minpathtime,'*r',"markersize",15); hold on; 

   

  %prevent entering into infeasible region 

   

  if  minpathtime_p<minpathtime, 

    xt=xt_p; 

    minpathtime = minpathtime_p; 

    ax= 0.1;    %reset acceleration 

    ay = 0.1;   %reset acceleration 

    endif 

endwhile 
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Appendix B 

%pathtimeintegrator 

function t = pathtime(x_tar_c,x0,xt) 

   

 %x_tar_c = active target 

 %x0      = current position 

 %xt      = tack coordinates  

 vel_wind = 10;         %wind velocity 

 wind_dir=[0,-1];       %wind direction 

 theta_nogo = deg2rad(40);     %deadzone 

 velcons = 3;   %velocity increase constant 

 deg_int = 5;           %constant provided by manufacture 

  

 step_inc = 0.1; %step size  

 

  

 tack_vect_1 = xt - x0;  %tack vector 1 

 tack_vect_2 = x_tar_c - xt; %tack vector 2 

  

 

 steps_1 = norm(xt - x0)/step_inc; %divide it into increments of .1 metres 

  

  

 step_c_1 = 0;  %set initial step 

  

 heading = tack_vect_1; 

 xc = x0; 

 time_elapsed_1 = 0; 

 %------------------------------------------------------------------------------ 

 while step_c_1<steps_1 

  

 target_vect = x_tar_c - xc;  %vector to target from current x 
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 theta_rd = real(acos(dot(heading,target_vect)/(norm(heading)*norm(target_vect)))); 

 theta_rw = real(acos(dot(heading,wind_dir)/(norm(heading)*norm(wind_dir))));   

  

  

   if dot(wind_dir,heading)/(norm(wind_dir)*norm(heading))<0 

 

    u = cos(theta_rd)*(vel_wind/cos(theta_nogo))*(1+0.01*velcons).^(abs(theta_rw-

theta_nogo)*180/(pi*deg_int)); %calculate velocity made good 

    v = (rad2deg(acos(dot(heading,wind_dir)/(norm(heading)*norm(wind_dir))))<140)*u; 

 

    elseif dot(wind_dir,heading)/(norm(wind_dir)*norm(heading))>0 

 

    v = cos(theta_rd)*(vel_wind/cos(theta_nogo))*(1+0.01*velcons).^(abs(pi-theta_rw-

theta_nogo)*180/(pi*deg_int));  

    %if downwind 

     

    endif 

  

  

 vel_tack = v/cos(theta_rd); 

  

 if vel_tack>10e-2 

 time_increment_1 = 0.1/vel_tack; %time elapsed in incremement 

  

 time_elapsed_1 = time_elapsed_1 + time_increment_1; 

 xc = 0.1*heading/norm(heading) + xc; 

  

 step_c_1 = step_c_1 + 1; 

 

 elseif vel_tack<10e-2 

  time_elapsed_1 = 10e6; 

  break 
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  endif 

  

 %plot(xc(1),xc(2)); hold on; 

 endwhile 

  

 t_1 = time_elapsed_1; 

 %------------------------------------------------------------------------------ 

 %--calculate time from tackpoint to active target 

   

  steps_2 = norm(x_tar_c - xt)/step_inc; %divide it into increments of .1 metres 

  step_c_2 = 0;  %set initial step 

  

 heading = tack_vect_2; 

 xc = xt; 

 time_elapsed_2 = 0; 

  

 while step_c_2<steps_2 

  

 target_vect = x_tar_c - xc;  %vector to target from current x 

 

 theta_rd = real(acos(dot(heading,target_vect)/(norm(heading)*norm(target_vect)))); 

 theta_rw = real(acos(dot(heading,wind_dir)/(norm(heading)*norm(wind_dir))));   

  

  

   if dot(wind_dir,heading)/(norm(wind_dir)*norm(heading))<0 

 

    u = cos(theta_rd)*(vel_wind/cos(theta_nogo))*(1+0.01*velcons).^(abs(theta_rw-

theta_nogo)*180/(pi*deg_int)); %calculate velocity made good 

    v = (rad2deg(acos(dot(heading,wind_dir)/(norm(heading)*norm(wind_dir))))<140)*u; 

 

    elseif dot(wind_dir,heading)/(norm(wind_dir)*norm(heading))>0 
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    v = cos(theta_rd)*(vel_wind/cos(theta_nogo))*(1+0.01*velcons).^(abs(pi-theta_rw-

theta_nogo)*180/(pi*deg_int));  

    %if downwind 

     

    endif 

  

  

 vel_tack = v/cos(theta_rd); 

  

  if vel_tack>10e-2 

   

 time_increment_2 = 0.1/vel_tack; %time elapsed in incremement 

  

 time_elapsed_2 = time_elapsed_2 + time_increment_2; 

 xc = 0.1*heading/norm(heading) + xc; 

  

 step_c_2 = step_c_2 + 1; 

  

 elseif vel_tack<10e-2 

  time_elapsed_1 = 10e6; 

  break 

  endif 

  

 %plot(xc(1),xc(2)); hold on; 

 endwhile 

  

 t_2 = time_elapsed_2; 

 

 t = [t_1+t_2];  

 %} 

  

 end 
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Appendix C 

%plot single tack path 

t0 = clock ();  %record start time of function 

  

x0 = [0,0]; %starting points 

 

target_tol = 4; %radius in metres within target to qualify  

xp = x0;    %current position 

x_tar= [-13.34947689 14.84067334;20,50;-80.87069946 5.397111456;-100,0;-80.75569946

 -7.316388104;20,-50;19.61212559 -49.87259138;0,0]; %specify targets in io 

 

 

%Initialize target tracking--------------------------------------------------------------- 

num_targets = [size(x_tar)](1);  %get number of targets 

 

itt=1;  %target tracker iteration 

 

while itt<num_targets+1 %create file indicating no targets have been achieved 

   

target_tracker(itt) = 0; 

itt=itt+1; 

endwhile 

save target_track.mat target_tracker; 

%----------------------------------------------------------------------------- 

 

x_tar_c = [x_tar(1,1),x_tar(1,2)]; %set initial target 

tar_act=1;    %active target is 1 

%------------------------------------------------------------------------------ 

 

while norm(x_tar_c - xp)>target_tol/10  %if target is not achieved 

 

  step_direction = (x_tar_c - xp)/(norm(x_tar_c-xp)); 

  stepsize = 1; 
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  xp_p=xp;  %store previous location 

  xp = step_direction*stepsize + xp; 

   

     

   plot(xp(1),xp(2),'*m','markersize',5); hold on; 

   

   

   

  if norm(x_tar_c - xp)<target_tol 

    if tar_act<size(x_tar)(1) 

    target_tracker(tar_act)=1; 

    x_tar_c=[x_tar(tar_act+1,1),x_tar(tar_act+1,2)]; 

    tar_act=tar_act+1; 

 

     end 

  end 

%------------------------------------------------------------------------------- 

    solvertime = etime (clock (), t0);  %record elapsed time 

 

  endwhile 
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Appendix D 

%Routine that advances the algorithm in steps till destination is reached 

t0 = clock ();  %record start time of function 

x0 = [0,0]; %starting points 

vel_wind = 10; %absolute wind velocity 

wind_direction = [0,-1]; 

 

target_tol = 4; %radius in metres within target to qualify  

xp = x0;    %current position 

x_tar= [20,50;-100,0;20,-50;0,0]; %specify targets in io 

 

time_elapsed = 0; 

 

%Initialize target tracking--------------------------------------------------------------- 

num_targets = [size(x_tar)](1);  %get number of targets 

 

itt=1;  %target tracker iteration 

 

while itt<num_targets+1 %create file indicating no. targets have been achieved 

   

target_tracker(itt) = 0; 

itt=itt+1; 

endwhile 

save target_track.mat target_tracker; 

%----------------------------------------------------------------------------- 

 

x_tar_c = [x_tar(1,1),x_tar(1,2)]; %set initial target 

tar_act=1;    %active target is 1 

%------------------------------------------------------------------------------ 

 

heading=[1,1]/(norm([1,1]));  %set intial heading 
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%------------------------------------------------------------------------------ 

while norm(x_tar_c - xp)>target_tol/10  %if target is not achieved 

 

  opt = vmg_2(xp,x_tar_c,heading); %obtain optimal direction, vmg 

 

  step_direction = [opt(1), opt(2)];  %in optimal direction 

  stepsize = 1;                       %step size is 1 metre 

   

  xp_p=xp;  %store previous location of sailboat 

  xp = step_direction*stepsize + xp;  %march forward in time 

   

  time_step = opt(4);                       %calculate time_step 

  time_elapsed = time_elapsed + time_step;  %calculate cumulative time_elapsed 

   

   plot(xp(1),xp(2),'*b','markersize',5); hold on;              %plot path 

   

   

  %change target to next one specified if current target is achieved 

  if norm(x_tar_c - xp)<target_tol 

    if tar_act<size(x_tar)(1) 

    target_tracker(tar_act)=1; 

    x_tar_c=[x_tar(tar_act+1,1),x_tar(tar_act+1,2)]; 

    tar_act=tar_act+1; 

 

     end 

  end 

%------------------------------------------------------------------------------- 

  %calculate relative directions 

  heading=xp-xp_p; 

  solvertime = etime (clock (), t0);  %record elapsed time 

    

 %plot(0,0,'or',"markersize",15); hold on; plot(10,0,'or',"markersize", 15); 

plot(10,10,'ow',"markersize", 15) 
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title ("Case 7"); 

xlabel ("X"); 

ylabel ("Y"); 

  endwhile 

   

  grid on; 

 plot(20,50,'or',"markersize",20); hold on; plot(-100,0,'or',"markersize", 20); plot(20,-

50,'or',"markersize", 20); plot(0,0,'or',"markersize", 20); 

%  title ("Case 7 - Race Course"); 
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Appendix E 

VMG - Function Handle to calculate optimal heading, max vmg and time step 

function opt =vmg_2(xp,x_tar_c,heading_c)  

%theta_rw,theta_rd 

%CONSTANTS 

vel_wind = 1;         %wind velocity 

wind_dir=[0,-1];       %wind direction 

theta_nogo = deg2rad(40);     %deadzone 

velcons = 3; %was3  %velocity increase constant 

deg_int = 5;           %constant provided by manufacture 

 

%theta_rd_deg = rad2deg(theta_rd); 

%theta_rw_deg = rad2deg(theta_rw); 

 

%VARIABLES 

%theta_rw = angle of direction of travel relative to wind 

%theta_rd = angle of direction of travel relative to destination 

 

 

heading = heading_c;    %current heading 

vect_tar = x_tar_c-xp;  %vector to target 

vmg_iter = 0;            %number of iterations 

heading_opt =[1,1];     %initial heading optimal 

vmg_opt = 0; 

 

%while loop to find optimal direction 

 

while vmg_iter<360 

 

%theta_rd is the angle between heading and destination 

theta_rd = real(acos(dot(heading,x_tar_c-xp)/(norm(heading)*norm(x_tar_c-xp)))); 
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%theta_rw is the angle between wind direction and heading 

theta_rw = real(acos(dot(heading,wind_dir)/(norm(heading)*norm(wind_dir))));   

   

%calculate VMG based on upwind or downwind 

if dot(wind_dir,heading)/(norm(wind_dir)*norm(heading))<0 

 

%calculate VMG 

u = cos(theta_rd)*(vel_wind/cos(theta_nogo))*(1+0.01*velcons).^(abs(theta_rw-

theta_nogo)*180/(pi*deg_int)); %calculate velocity made good 

 

%assign 0 value to VMG if the heading is in the no-go zone 

v = (rad2deg(acos(dot(heading,wind_dir)/(norm(heading)*norm(wind_dir))))<140)*u; 

 

elseif dot(wind_dir,heading)/(norm(wind_dir)*norm(heading))>0 

 

v = cos(theta_rd)*(vel_wind/cos(theta_nogo))*(1+0.01*velcons).^(abs(pi-theta_rw-

theta_nogo)*180/(pi*deg_int));  

%if downwind 

 

endif  

 

%search routine to find optimal heading 

if v>vmg_opt 

  vmg_opt = v; 

  heading_opt = heading; 

   

elseif v<vmg_opt 

  vmg_opt = vmg_opt; 

 

vmg_iter=vmg_iter+1; 

 

%plot(vmg_iter,vmg_opt); hold on; 
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endif 

   

  heading = rot(pi/90,heading); 

 

endwhile 

 

 

%calculate time_step 

time_step = (1)/(vmg_opt/cos(theta_rd)); 

 

%generate return vector 

opt = [heading_opt,vmg_opt,time_step]; 

 

end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 
 

Hemanth Sarabu  Optimizing Sailing Trajectories 

Appendix F 
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Appendix G 

function Xk =SteepestDescent_DLS(x) 

 

Xj=[0;0]; 

Xs=x;     %Starting points 

Xi=[Xs(1);Xs(2)];           

Xt=Xi;    %Xt holds Xs information from previous iteration 

 

i=1;      %Initialise iterations   

 

%convergence criteria to detect near zero gradient 

while abs(grad(Xi(1),Xi(2)))>[10e-7,10e-7]  

 

Xj=Xi;                             

gradi=grad(Xi(1),Xi(2));    %gradient of objective function at x,y 

     

al=10;    %search bracket length 

a=0.5*al; %initial search length to enter while statement 

ai=al;     

il=0;     %linesearch iteration 

as=0;     %as is lower bracket of line search 

at=al;    %at is higher bracket of line search 

 

   while abs(a-ai)>10e-6    %convergence criteria to detect very small changes 

        ai=a;                

        

       %Dichotomous line search is employed with ap and aq used to 

       %probe function value at either side of a length 

       %the lengths are expressed as a function of the local Xj vector 

        ap=a*0.99;          %ap is probe length (at Xj) 

        aq=a*1.01;          %aq is probe length in opposite direction (Xj) 
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        %objp and objq are function values at either side of the search length 

        objp=obj([Xj-ap*gradi](1),[Xj-ap*gradi](2));   

        objq=obj([Xj-aq*gradi](1),[Xj-aq*gradi](2)); 

 

         

      %select side of the bracket with lower function value   

      if objp<objq     %if left side gives lower function value 

          at=a;        %set right bracket as a  

          as=as;       %leave left bracket as is 

       

      elseif objp>objq  %if right side gives lower function value   

              at=at;    %leave right bracket as is 

              as=a;     %set left bracket as a 

      endif 

   

   

  a=0.5*(at-as);        %set new search length as in between the brackets 

  il=il+1;              %update iteration for line search 

   

  %plot(i,obj([Xj-ai*gradi](1),[Xj-ai*gradi](2))); hold on;  

  %plot(i,ai); hold on;  

    

   endwhile   %end of linesearch algo 

 

Xj=Xi-a*gradi; %update Xj vector 

                %Xj= Xj-0.001*gradi; 

 

Xt=Xi;          %update Xt 

Xi=Xj;          %update Xj 

 

i=i+1;          %update iteration value 
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plot(Xj(1),Xj(2),'ro'); hold on; %plot how solution travels 

 

 

endwhile        %end solution search 

 

objs=obj(Xj(1),Xj(2));  %objective function at final solution 

 

Xk=[Xj;i;objs]; 

 

ti=i; %total iterations 

 

%plot(i,(Xj(1)),'-'); hold on; plot(i,(Xj(2))); 

%plot(i,obj(Xj(1),Xj(2))); hold on; 

 

%contour plot of objective function 

 

%m=[(min(0,min(x))):0.1:(max(10,x))]; 

%n=[(min(0,min(x))):0.1:(max(10,x))]; 

%[M,N]=meshgrid(m,n); 

%O=(12+(M.^2)+(1+N.^2)./(M.^2)+(((M.*N).^2+100))./((M.*N).^4))*0.1; 

%contour(M,N,O,[10e5,10e5,10e4,10e4,5000,5000,1000,1000,100,100,10,10,8,8,6,6,4,4,2,2]); 

  

 

title ("Case 4 - Tack Point Optimization"); 

   

xlabel ("X"); 

ylabel ("Y"); 

 

end 


