
Level-k Thinking Strategies for Pacman Players - Final Report

Hemanth Sarabu, Venkata Ramana Makkapati, Vinodhini Comandur

May 2nd, 2018

1 Introduction

Level-k thinking (also called cognitive hierarchy theory) is a behavioral model used to describe human
thought processes and outcomes in strategic games. It was developed by two researchers, Stahl and Wilson,
after analyzing human behavior through a series a experiments [1]. It was understood that when a group
of players have to perform under an adversarial situation, at first, each player tends to form a prior about
the behavior of other players, and then chooses the best response given the prior. Players can differ in their
priors and in their abilities to identify best responses. The simplest case is one in which a player selects a
strategy at random without any prior belief, a level-0 player. A more sophisticated player of level-1 operates
under a prior that his opponents are all level-0 players, and finds a best response. Generalizing this notion, a
level-k player best-respond assuming that other players are distributed among level-(k− 1) and lower. Some
more experimental data and a more mature version of this theory can be found in Refs. [2], [3].

Pacman is a popular arcade game and it is an ideal testbed to analyze the cognitive hierarchy theory (CHT)
in depth leading to interesting results. In a general Pacman game, the ghosts’ movements vary from random
to semi-random, where each ghost has a specified task, including one of them pursuing Pacman (the agent).
From the CHT point of view, ghosts can be categorized as level-0 players, and under that assumption, the
best response for Pacman can be found, positioning it at level-1. There exists prior work [4–8], concerned
about finding best responses for Pacman. The next step, finding the best response for the ghosts that assume
Pacman to be a level-1 player, has been partially achieved in Refs. [9–11], where the ghosts are made to evolve
using genetic algorithms. It is important to observe that the past studies have analyzed the best strategy for
either Pacman or ghosts alone, without any evolution or training of the adversary. Additionally, the focus
of research in earlier works was primarily on the technical aspects of the schemes that were employed for
finding what can be called “higher level responses for the players”, but it was not in the direction of CHT.

Through the course project, we initially wanted to analyze the best responses for the two sets of players
(ghosts and Pacman) in the Pacman game, looking at the problem from a CHT perspective, and explore
some directions listed below.

1. What is the best response for Pacman (ghosts) assuming that the ghosts are of level-0/2/4 (Pacman
is of level-1/3/5)?

2. Is Pacman (ghosts) at a given level objectively superior to ghosts (Pacman) of all the lower levels or is
it superior for just one level below?

3. What is a way to estimate the level of the opponent player online by observing the game?

All the above questions are new to the existing literature in the context of Pacman, and finding their solutions
is a first step in extending them to a more general class of pursuit-evasion games. During the course of this
project, a lot of challenges have shown up and the findings are discussed in the following sections.

1



(a) Small layout (b) Medium layout

(c) large layout

Figure 1: Pacman layouts considered for the project

2 Reinforcement learning and Challenges

To address the first question, it was necessary to train Pacman against level-0 ghosts to obtain a level-
1 Pacman and repeat this procedure by training ghosts and Pacman alternately against the lower level
counterpart. UC Berkeley offers a course on the Introduction to Artificial Intelligence, with the lectures and
source codes for some Pacman projects available in the open-source domain1. One of the projects focuses
on reinforcement learning of Pacman to win the game against two ghosts. Brief details of the project as
relevant to the current project are summarized below.

1. A traditional environment has been set up with multiple layouts as grids or classic Pacman (small and
medium sizes) to choose from and the number of ghosts is fixed to two.

2. The full game state consists of the food, capsules, agent (Pacman and ghosts) configurations and score
changes, which can be used by Pacman to reason about the game. Some basic rules of how Pacman
and the ghosts interact with the environment have been specified, including the score calculation.

3. The objective is to use the environment created to implement Q-learning and approximate Q-learning
for Pacman against the ghosts which can move randomly (level-0) or directional. Directional ghosts
prefer to rush Pacman or flee when scared.

Challenge 2.1. While the code from UCB is complete in terms of Pacman environment, it is inaccessible
to make any changes that would help in implementing RL algorithms for level-k thinking.

1http://ai.berkeley.edu/project overview.html

2



Table 1: Reward Structure

Attributes Pacman Ghost

Time penalty -1 -1
Food 2 -2
Ghost capture 100 -100
Pacman death -500 500
Pacman win 500 -500

To overcome this challenge, an environment was built from scratch in python along with modules for Q-
learning and approximate Q-learning. The Pacman layouts considered for this project are shown in Figure
1.

2.1 Rewards

The rewards for the players are documented in Table 1. The cumulation of rewards at every time instant
results in the game score. Depending on whether Pacman or the ghosts are trained and tested, the corre-
sponding reward scheme is invoked. It is important to note that both players are penalized at every move
for the increasing time. While Pacman is rewarded whenever it consumes food or a scared ghost, or when it
completes all the food (which is when Pacman wins the game), it has a major penalty if it dies, i.e. consumed
by a ghost. On the other hand, the reward structure for a ghost depends on Pacman’s penalties. Hence, the
ghost’s reward structure comprises more of penalties corresponding to the rewards Pacman receives. The
only positive reward the ghost receives is when it eats Pacman.

Challenge 2.2. The reward structure favors Pacman more and is sparse for the ghost. This could make it
more challenging for a ghost to capture Pacman.

This challenge is perhaps best overcome by allowing cooperation between the ghosts in some manner. The
current format does not provide any such information and it could be an additional incentive in capturing
Pacman.

2.2 Q-learning and its approximate variant

Q-learning algorithm is implemented and tested, where Pacman learns by trial and error from interactions
with the environment through its update of the state, action and reward. The Q-values are computed using
the Bellman equations to maximize rewards (refer Eq.1). It is important to note that the reward values
are already encoded, with points gained as food is eaten and points constantly decreasing with time, which
drives Pacman to complete the game soon. Brief tests were carried out with different values to study their
effects on the game.

Q(st, at)← Q(st, at)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning rate

·

learned value︷ ︸︸ ︷(
rt︸︷︷︸

reward

+ γ︸︷︷︸
discount factor

· max
a

Q(st+1, a)︸ ︷︷ ︸
estimate of optimal future value

)
(1)

2.2.1 Training Pacman to achieve Level-1

Q-learning was successfully implemented and tested for attaining level-1 Pacman against level-0 ghosts for
the small layout, which can be seen in the attached video, qlearning small.gif. During the training phase, the
number of games resulting in high negative rewards (which is indicative of Pacman losing) began decreasing

3



as the number of training iterations grew (refer Fig.2a). Furthermore, Pacman won around 75% of the games
in testing phase with a high positive score, as seen in Table 2. However, Q-learning for level-1 Pacman did
not work as well when trained and tested on larger layouts (refer the attached video, qlearning medium.gif ),
where Pacman’s average training rewards remained negative throughout training, despite a large number of
training sessions, which is depicted in Fig.2b. At test time, he played badly, losing almost all of his test
games (only 1% of wins as indicated in Table 2). Additionally, the training also took a long time, despite
its ineffectiveness. This is a major caveat of Q-learning because each layout configuration is a separate state
with separate Q-values. Pacman has no way to generalize that running into a ghost is bad for all positions.
Obviously, this approach will not scale.

(a) (b)

Figure 2: Plots showing of evolution of final score during the training phase of Q-learning

Challenge 2.3. Q-learning approach does not scale well with board configurations and the number of training
sessions for larger layouts cannot be increased beyond a point due to RAM limitations. This would result in
inefficient agents that underperform.

This challenge is overcome by resorting to approximate Q-learning for training the agents. It uses a derived
low dimensional form of state representation with Q-values approximated as a linear combination of certain
features, where Pacman learns weights for these features. The mathematical representation of approximate
Q-learning is summarized in Eqs. 2 through 4.

Q(st, at) =

n∑
i=1

fi(st, at)wi (2)

wi ← wi + αfi(st, at)d (3)

d =
(
rt + γmax

a
Q(st+1, at)

)
−Q(st, at) (4)

A feature extractor script is already provided in the source code files, where a simple version returns the
following for a basic reflex Pacman -

1. Whether a ghost collision is imminent

2. Whether food will be eaten immediately

3. Whether a pill eating is imminent

4. How far away the next food is

5. What is the distance to the nearest pill

4



The approximate Q-learning function was successfully implemented and tested for level-1 Pacman against
level-0 ghosts. This agent won almost every time with these simple features for even larger and complex
layouts, as seen in the attached videos, approxq medium L1.gif and approxq large L1.gif. Figure 3 shows
the game score trends during the training phase on the medium layout. Unlike the Q-learning training
(refer Fig.2), approximate Q-learning shows a large number of games with high positive scores throughout
the training. Furthermore, the learning is much quicker with steep convergence as seen in the first few
iterations, where the number of games with large negative scores immediately reduces. Table 2 shows that
Pacman wins a majority of the games in testing phase, with 85% in the medium layout and 94% in the
large layout. Although training for level-1 Pacman was done on the medium layout, it is interesting to see
that level-1 Pacman performs better when tested on the large layout. This is because the state space has
grown with more pills and food, while the number of ghosts is maintained at two. This gives Pacman more
state-space to explore and higher rewards to win the game.

Figure 3: Evolution of final score during the training phase of approximate Q-learning for Level-1 Pacman

2.2.2 Training Ghost to achieve Level-2

With successful training of Pacman against level-0 ghosts, a level-1 Pacman was achieved and the corre-
sponding weights were recorded. Now, by deploying level-1 Pacman in the medium layout, the objective
was to train ghosts to beat level-1 Pacman in order to attain level-2 ghosts and determine the weights for
features associated with ghosts. In contrast to the features identified for Pacman, the features for the ghost
were simpler and direct -

1. What is the shortest distance between the ghost and Pacman

2. Is the ghost in ‘afraid’ mode, i.e. did Pacman eat a pill recently

The training was done using approximate Q-learning by considering the same rewards and features for both
ghosts on the medium layout. As mentioned previously, no cooperation strategy was included. The trends
in game scores with the number of training sessions can be seen in Fig.4. It is seen that the number of
games with high positive scores are low, which implies a small number of wins for the ghosts. This is
further corroborated by observing the percentage of wins in Table 2. The ghosts win only 12% in the
medium layout and 47% in the large layout. The increased share of wins in the large layout is similar to the
trend seen for Pacman, i.e. more state-space is available for exploring and capturing. The attached videos
approxq medium L2.gif and approxq large L2.gif show the trained ghosts tested against level-1 Pacman in
medium and large layouts. Although the ghosts have learned to actively pursue Pacman in order to capture
it, the pursuit is not in an organized manner, thereby leading to multiple games being lost by ghosts (or won
by Pacman). To summarize, the perfect “level-2” ghosts have not been achieved and this could be attributed
to multiple reasons.

5



Challenge 2.4. Level-2 ghosts could not be achieved with the current framework due to the sparse rewards for
ghosts, lack of cooperation between the ghosts and insufficient features. Additionally, approximator function
for Q-values is linear which limits its ability to include more detailed information about the game encapsulated
in the features.

This challenge could be overcome by improving the rewards structure and the quality of features. Providing
path planning ability for the ghost or allowing some type of cooperation between the ghosts that would allow
them to corner Pacman will be very useful. Another possible approach would be to consider a nonlinear
approximator which could be obtained from deep Q-learning.

Figure 4: Evolution of final score during the training phase of approximate Q-learning for Level-2 ghosts

Table 2: Performance of the two learning methods for different layouts during the testing phase

Learning
method

Layout and Level Pacman Win % Mean score Standard deviation

Q-learning
Small layout with
Level-1 Pacman

75 % 343 286

Medium layout with
Level-1 Pacman

1 % -532 129

Approximate-Q

Medium layout with
Level-1 Pacman

85 % 433 379

Large layout with
Level-1 Pacman

94 % 546 266

Medium layout with
Level-2 ghosts

88 % 277 43

Large layout with
Level-2 ghosts

53 % 126 53

3 What have we achieved and learned?

1. A level-1 Pacman has been successfully trained and tested, and the weights for the Q-value approxi-
mation have been obtained.

2. Key features which affect Pacman’s ability to to learn and succeed in winning against level-0 ghosts
have been identified.

6



3. A simple linear approximator function for Q-values, as opposed to actual Q-values, is capable of
reducing number of training sessions and scaling for bigger layouts.

4. Achieving a good ‘level-2’ ghost is not as direct as obtaining level-1 Pacman using approximate Q-
learning technique.

4 Some Future Directions

1. Further investigation to obtain level-2 ghost in the present setting is required by incorporating path
planning, cooperation between the ghosts, improved features and rewards.

2. Achieve higher levels of Pacman and ghosts to ensure scaling and determining subsequent limitations.

3. Implementing more sophisticated techniques like deep q-learning with GPUs would help training mul-
tiple levels of agents better.

4. It would be interesting to determine if a higher level Pacman (say level-5) is objectively better than
its lower level counterparts (level-0/2/4) or if it is unnecessarily ‘over-thinking’.

5. Develop an observer for the agent to gauge the opponent’s level from its movements and help the agent
to adapt, so that it can play to win the game.

References

[1] D. O. Stahl and P. W. Wilson, “On players models of other players: Theory and experimental evidence,”
Games Econ. Behav., vol. 10, no. 1, pp. 218–254, Jul. 1995.

[2] R. Nagel, “Unraveling in guessing games: An experimental study,” Am. Econ. Rev., vol. 85, no. 5, pp.
1313–1326, 1995.

[3] C. F. Camerer, T.-H. Ho, and J.-K. Chong, “A cognitive hierarchy model of games,” Q. J. Econ., vol.
119, no. 3, pp. 861–898, 2004.

[4] M. Gallagher and A. Ryan, “Learning to play Pac-Man: an evolutionary, rule-based approach,” in
Congress on Evolutionary Computation, CEC, vol. 4, Dec. 2003, pp. 2462–2469 Vol.4.

[5] I. Szita and A. Lõrincz, “Learning to play using Low-Complexity Rule-Based policies: Illustrations
through ms. Pac-Man,” Journal of Articial Intelligence Research, vol. 30, pp. 659–684, 2007.

[6] N. Tziortziotis, K. Tziortziotis, and K. Blekas, “Play Ms. Pac-Man using an advanced reinforcement
learning agent,” in Lecture Notes in Computer Science, 2014, pp. 71–83.

[7] L. Bom, R. Henken, and M. Wiering, “Reinforcement learning to train Ms. Pac-Man using higher-order
action-relative inputs,” in IEEE Symposium on Adaptive Dynamic Programming and Reinforcement
Learning (ADPRL), Apr. 2013, pp. 156–163.

[8] K. Ranjan, A. Christensen, and B. Ramos, “Recurrent deep Q-learning for Pac-man,” 2016.

[9] F. Liberatore, A. M. Mora, P. A. Castillo, and J. J. Merelo, “Comparing heterogeneous and homogeneous
flocking strategies for the ghost team in the game of Ms. Pac-Man,” IEEE Trans. Comput. Intell. AI
Games, vol. 8, no. 3, pp. 278–287, 2016.

[10] F. Liberatore, A. M. Mora, P. A. Castillo, and J. J. M. Guervós, “Evolving evil: Optimizing flocking
strategies through genetic algorithms for the ghost team in the game of Ms. Pac-Man,” in Applications
of Evolutionary Computation. Springer Berlin Heidelberg, 2014, pp. 313–324.

[11] M. Gallagher and M. Ledwich, “Evolving Pac-Man players: Can we learn from raw input?” in IEEE
Symposium on Computational Intelligence and Games, Apr. 2007, pp. 282–287.

7


